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Abstract 

The problem concerning vertex coloring of distance graphs are keenly pursued due to the motivation by 
the famous Hadwiger-Nelson plane coloring problem(HNP) concerning unit distance graphs.  HNP asks 
for the minimum number of colors required for coloring the points of the two dimensional plane that are 
separated by a unit distance. In this paper we determine the chromatic number of distance graphs whose 
distance sets consists of different types of Pythagorean numbers and Semiprime numbers.  

Keywords: Distance Graphs, Chromatic number, Pythagorean distance graph, twice Pythagorean 
distance graph, thrice Pythagorean distance graph, Semiprime distance graph. 

 
1   Introduction  

We do not consider graphs that are either non-simple or directed. 

Proper vertex coloring of graphs is a vital area of research. Fascinating ideas stems 
from the issues concerning allotment of channels to several regulating networks such as 
communication, traffic etc., One can refer [18] for more. In traditional vertex coloring 
problems [9] a constraint is normally thrust on colors of vertices that are adjacent. But a 
few other meaningful contexts demand accommodation of constraints such as (i) 
adjacent vertices and (ii) vertices separated by a distance of two units are colored 
differently. 

For basics and terminology about graphs one can refer to [3, 8]. Proper vertex coloring 
problem asks for a procedure to allot colors to the vertices such that any pair of 
adjacent vertices are colored differently. It has a variety of practical applications such as 
drafting a schedule or time-table, in mobile radio frequency allotment, in suduku, in 
register allocation, in bipartite graphs, map coloring to name a few. For more such 
examples one can refer to [6] which is a case study on graph coloring applications. 
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1.1 Coloring Graphs With Integer Distance Sets 

A graph G is said to have chromatic number (G) = k (k is a positive integer) when there 

is a function f: V(G) {1,..., k} that assigns different values to adjacent vertices and k is 

smallest with this feature. By an integer distance graph G(Z, D) with D Z+ we mean the 

graph with V(G(Z, D)) = Z and any two u, v  V(G) is said to form an edge iff |uv|  D. 
Eggletonet.al in [7] first considered such graphs. A large number of papers were written 

on this topic, see [7, 21]. For the set of primes P as the distance set the (G(Z, D) was 

computed as4 [4]. The (G(Z, D) is completely found when D contains at most three 

elements. Clearly (G(Z, D)) = 2 if D is a one element set. (G(Z, D)) = 2 if D contains 

only odd elements. This is so as |D| +1 bounds (G(Z, D)) from above. If D is finite then 

(G(Z, D)) = 3 if D includes two coprime elements of distinct parity. Also one can see 
[25, 24, 27, 22]. 

 

1.2 Pythagorean Triples And Quadruples 

Let us denote in what follows a Pythagorean as p. Let (a, b, c) with a2+b2=c2 be a p 
triangle where (a, b, c) is referred as a p triple. If these numbers satisfies (a, b) =1 or (b, 
c) =1 or (c, a) = 1, then they are called as primitive. Note that if one of (a, b) =1 or (b, c) 
=1 or (c, a) = 1, then the other two hold good effortlessly. 

It is well known that, a=2qr,b=q2
r2,c=q2+r2, or a=q2

r2,b=2qr,c=q2+r2represents all 
primitive p triples wherein (q, r) = 1, r <q and q, r are of different parity. Infact, the 
converse of this is also true. It is easy to observe that if (a, b, c) are primitive then so 

is(sa, sb, sc) where s Z+.  qr(q2
r2) is the area of such a triangle. A p integer is the 

area of a p triangle. In fact Mohanty et.al in [21] coined the term p integer. s2x for r Z+ 
is a p number whenever x is so. However the converse need not be true. For example, 

60 = 22
15 is a p number, but 15 is not a p number. But 96 = 22

24 is a p number, and 
24 is also a p number. 

A p quadruple is an ordered 4-tuple (x, y, z, w) such that x2 + y2 + z2 = w2. Suppose that  

x2 +y2=k and w=z +  then k+ z2 =(z + )2. This implies that z =(k 2)/2. Notice that if 

k is even then  must be even and if k is odd then  must be odd for z Z; If k is even 

then it has to be an integer multiple of 2.k >2 is necessary for z to be positive. In 
order to construct distance graphs whose distance set consists of p quadruples it is 
pertinent to generate them. For more see [1]. 

Let x be even and y be odd (alternately one can let x as odd and y as even). In this 

instance it is clear that k is odd andhence  is odd. If x and y have common factors pj, j 

= 1 to n then k=  

N
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jj qp  where mj, sj, rj and tj all in Z for 

all j. z=(k2)/2 becomes    
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z .So with k >2, tj can 

have all integral values from 0 to sj so that  takes the above form with either rj = 0 or rj 

= mj for all j. For example, if x = 12, y = 15 then k = 369= 32
 41. Note that we have 
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either  = 1 or 32 andnot 41 as 412> k. So z = (3691)/2 = 184 and w = 185 with = 1 or 

(369 81)/18 = 16 and w = 25 with  = 32.So the primitive quadruples for x = 12, y= 15 
are (12, 15, 184,185) and (12, 15, 16, 25). Similarly for x = 210, y = 135 we get four 
different p quadruples (210, 135, 1162, 31163), (210,135, 3458, 3467), (210, 135, 1234, 
1259) and (210, 135, 26,251). 

Let x and y be both even. Here k should be an even number and hence it follows that s 
is even. The arguments as in the above instance applies with the exception that some 

power of 2 arisehere. That is k=  

N
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jj qp2r .Now z =(k 
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2)/2 implies z=2(mr1)
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 .Here the stipulations 

for getting primitive quadruples are same with an additional stipulation that r = l or r = 

m1. So the values of  are2l
)q)(p(
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. tj can take 

any integer value from 0 to sj when k >2 and ri = 0 or ni. For instance, if x = 6 = 2.3,y = 
30 = 2.3.5 then k = 23. 32. 13 = 936. The various quadruples that results out are: (6, 30, 
233, 235), (6, 30, 115, 119), (6, 30,17, 35),(6, 30, 5, 31). 
 

Let x = 2a+1 and y = 2b+1 where a,b Z+. Then k = x2 + y2 = (2a+1)2 + (2b+1)2. So k = 

4(a2+b2) + 4(a+b) + 2. k even implies  should be even but k has to contain a factor of 4 

to be an integral multiple of 2.However k is a multiple of 2 only. Hence we infer that no 
set of quadruples can be got when x and y are both odd. 
 
2 Main Results 

 

If D comprises only positive integers and r Z+. If D/gcd(D)contains no multiple of r then 

(G(Z, D))  r. Suppose gcd(D)= 1 then D contains no multiple of r. In this case we can 

color the vertices of G with colors from 0,1,...,r1 by allotting to every integer i the color 
corresponding to the residue class of i modulo r. Two integers will be given same color 
only when their difference is a multiple of r. As no multiple of r lies in D it results in a 
chromatic coloring of G(Z, D). The converse of this is also true when r = 2.  That is G(Z, 
D) is bipartite when D/gcd(D) includes integers that are not multiples of 2. It is a fact that 

if D  P with 2  |D| then (G(Z, D)) = 2 if 2  D, else (G(Z, D)) = 3 or 4. Similarly if 2  

D and 3  D then (G(Z, D)) = 3;if {2, 3, 5} or {2, 3, 11, 13}  D then (G(Z, D))= 4. So 
we deduce that: 
 
Theorem 1: Suppose that a distance graph G(Z, D) whose distance set D of cardinality 

four has only primitive p quadruples and 2 D. Then (G(Z, D)) = 2. 
 
The Theorem 1 is derived out of the observation of the nature of quadruples that are 

primitive p. None of them have 2 init. if 3  r then it is natural ask whether (G(Z, D))  r 
for finite sets D is NP complete. 
 
Fact 1: Let all the elements in D have x as a common divisor. Then G(Z, D) consists of 

subgraphs that are disjoint and each isomorphic to G(Z, D/x}) with D/x = {d/x:d  D}. 
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Also this shows that (G(Z, D)) = (G(Z, D/x)). In view of this one can deem that gcd(D) 
=1. [24] 
 
Theorem 2: Deem that (a, b) = 1 when (a, b, c) forms a p 3-tuple. Then (b, c) = 1 and 
(c, a) = 1. 
 
Proof One can assume either, c2 = a2 + b2 or b2 = a2 + c2 or a2 = c2 + b2 Let c2 = a2 + b2.  

Suppose that b, c 1 and a, c 1. Then there exist m1,m2  2  N such that m1/b, m1/c 
and m2/c, m2/a. That is b =m1t1, c = m2t3 and a = m2t4 for some t1, t3 and t4. Now c2= a2 

+b2
 m 

 t 
  m 

 t 
 
 = 2

3
2
2tm  = (m2t3)

2, a contradiction as 2
1

2
1

4
2

2
2 tmtm  is not perfect square 

for any m1, m2, t1 and t4. 
 
Theorem 2 is not true if a, b, c is not a p triplet. To assert, let (a, b, c) = (2, 3, 4). Then 
(2, 3) = 1. A positive integer n is p if and only if it has at least 4 distinct positive divisors 

p, q, r and s such that pq = rs = n and p+q = rs. [21] Bert Miller [2] has defined a 

positive integer n Z+ as a nasty integer if it has at least four different factors p, q, r and 

s such that p+q = rs and pq = rs = n. So n is a nasty integer if and only if it is p. It is 
known from [21] that there are infinitely many p numbers and every p number is a 
multiple of 6.We also infer from [21] that if n is p thenr2n is p for all r. If n and rn are both 

p then rn is p for every positive integral exponent rs. So 5s
 6, 2s

 6, 7s
 30 are p for all 

s  Z+.  
 
A natural number n is called a twice or a thrice p number if it can be the area of two or 
three different p triangles. There are an infinite number of twice p numbers. The number 
840 is a thrice p number as it is thearea of three p triangles with sides (40, 42, 58), (70, 

24, 74) and (112,15,113). So 840x2 is a triply p for every x  Z+. The numbers 210, 
2730 and 7980 are the only twice p numbers below 10,000.  210 is the area of two 
primitive p triangles with sides (12,35,37) and(20,21,29); 2730 for (28,195,197) and 
(60,91,109); 7980 for(40,399,401) and the following are the 150 p numbers 
below10,000 [21]. 
 
A =  {6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 300, 336, 384, 
480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 840, 864, 924, 960, 990, 1014, 1176, 
1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890, 
1920, 1944, 2016, 2100, 2160, 2166, 2184, 2310, 2400, 2430, 2520, 2574, 2646, 2730, 
2880, 2904, 2940, 2970, 3000, 3024, 2036, 3174, 3360, 3456, 3570, 3630, 3696, 3750, 
3840, 3900, 3960, 4056,4080, 4116, 4290, 4320, 4374, 4500, 4536, 4620, 4704, 4860, 
4896, 4914, 5016, 5250, 5290, 5376, 5400, 5544, 5610, 5670, 5766, 5814, 5880, 6000, 
6090, 6144, 6240, 6480, 6534, 6630, 6750, 6804, 6840, 6864, 6936, 7140, 7260, 7350, 
7440, 7560, 7680, 7776, 7854, 7956, 7980, 8064, 8214, 8250, 8316, 8400, 8640, 8664, 
8670, 8736, 8820, 8910, 8976, 9126, 9240, 9360, 9600, 9690 and 9720}. 
 
In the above list, 43 are primitive p numbers. 
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B={6, 30, 60, 84, 180, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 
1710, 1716, 2310, 2340, 2574, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 
5640, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 8970, 8976 and 9690}. 
 

In view of Fact 1, (G(Z, B)) = (G(Z, B1))where B1= {1, 5, 12, 14, 30, 35, 55, 84, 
91,105, 140, 154, 165, 204, 220, 231, 260, 285, 286, 385, 390, 429, 455,506, 595, 650, 
680, 715, 770, 819, 836, 935, 969, 1015, 1105, 1190,1240, 1309, 1326, 1330, 1495, 

1496, 1615}. Walther [26],showed that (G(Z, D))|D|+1. In view of this, we deduce that 

(G(Z, B1))  44. Yegnanarayanan [28] showed that if D comprises some elements of Z, 

then (G(Z, D))  min{n N : n ( n
0D +1)} (where n

0D  is the subset of D built by integers 

divisible by n). In view of this, we calculate the upper bound for various values of n 

withrespect to the distance set B1. For n = 1, we get n( n
1B +1) = 1  (43+1) = 44; For n = 

2, 2
1B  = {di B1:2|di i=1, ... 43} = {12, 14, 30, 84, 140, 154, 204, 220, 260, 286, 390, 506, 

650, 680,770, 836,1190,1240, 1326,1330,1496}.So, n( 2
1B +1)=2 (21+1)=44; For n=3, 

3
1B = {di B1:3|dii=1,... 43} = {12, 30, 84,105,165, 204, 231, 285, 390, 429, 819, 

969,1326}.So, n( 3
1B +1)=3(13+1)=42; For n = 4, 4

1B  = {di  B1 :4|di i=1,...,43} = {12, 

84,140, 204, 220, 260, 680, 836,1240,1496}. So, n( 4
1B +1) = 3 (10+1) = 44; For n = 5, 

5
1B = {di  B1: 5|di I = 1,...,43} = {5, 30, 35, 55,105,140, 165, 220, 260, 285, 390, 455, 

595, 650, 680, 715, 770, 935,1015,1105,1190,1240,1330,1495,1615}.So, n( 5
1B +1)=5 

(23+1) =120; For n= 6, 6
1B ={ di B1: 6| di I = 1,... 43}={12, 30, 84, 204, 390}. So, n( 6

1B

+1) = 6 (5+1)=36; For n = 7, 7
1B = {di  B1: 7|di i=1,...,43}= {14, 35, 84, 91,105,140,154, 

231, 385, 455, 595,770, 819,1015,1190,1309, 1330}. So, n( 7
1B +1)=7 (17+1) = 126; 

For n = 8, 8
1B  = {di  B1: 8|di i=1,..., 43} = {680,1240,1496}. So, n( 8

1B +1) = 8 (3+1) = 32; 

For n = 9, 9
1B ={diB1: 9|di i=1,...,43} = {819}. So, n( 9

1B +1) =9  (1+1)=18; Obviously, 

n=10,11,12,13,14,15 will not yield a better upper bound. But for n=16, we see that 16
1B = 

{diB1 :16|di i=1,...,43} = .  So, n( 16
1B +1)=16(0+1)=16; We can stop here as we go 

higher it is not going to improve. It is clear that minnNn( n
1B +1)=16. Therefore 

(G(Z,B1))  1. 
 
In [23] Voight has established that if D = {x, y, x+y} and (x, y)=1, and D comprises at 

least one even integer and at least one integer divisible by 3,then (G(Z, D))=4. In view 
of this, we search for a subset B2 of B1with |B2| = 3, and the elements of B2 of the form 
x, y, x+y satisfying the above conditions. Clearly x=14, y=91 & z=105 will produce such 

a set. So choose B2 ={14, 91, 105}.Then (G(Z, B2))=4. Now as B2  B1 and  is a 

monotone function, we deduce that (G(Z, B2))  4. 
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Fact 2: Let D  Z+and consider G(Z, D). Then G(Z, D) is connected if and only if (d1, 

d2,...) =1 for di  D, i =1, 2,... . This is because there will be a path connecting vertices 

sand s+1 if and only if  di, ej D, i=1 to t1, j=1 to t2 such that 1ed
21 t

1j

j

t

1i

i 


. This can 

occur only when (d1, d2,...) = 1 for all di. In view of the above, we derive that: 
 

Theorem 3: Suppose that D is a set of primitive p numbers less than10,000. Then 4  

(G(Z, D))  16. 
 
An alternate proof for the upper bound of Theorem 3 can also be obtained as follows. 
Consider the set D of positive integers and let r be any positive integer. Derive a new 
set D1 from D by dividing each element of D by the greatest common divisor of D. If 

D1contains no multiple of r, then (G(Z, D1))  r. This is because by Fact 2, we can 

deem that gcd(D1)=1. So, we can assign colors 0,1,... r1or (1,2,... r) to the vertices of 
G(Z, D1) by allotting to each integer i the color with respect to the residue class of i 
modulo r. It is easy to note that two different integers will be allotted to the same color 
class exactly when the difference is a multiple of r. As no such multiple of ris present 
inD1, this results in a proper r-coloring for the vertices of G(Z, D1). In our case, choose D 

= B, D1 = B1 and r = 16. Then (G(Z, B1))  16. 
 

Since G(Z,B1)G(Z,A1) whereA1 is obtained from A by reducing all the elements of A 

upon dividing them by 6 and  is a monotone function, we have (G(Z,B1)) (G(Z,A1)). 
Note that A1={1, 4 ,5, 9, 10, 14, 16, 20, 25, 30, 35, 36, 40, 45, 49, 55, 56, 64, 80, 81, 84, 
90, 91,100, 105,120,121,125,126,140,144,154,160,165,169,180,196, 204, 220, 224, 
225, 231, 245, 250, 256, 260, 270, 285, 286, 289, 315, 320, 324, 336, 360, 361, 364, 
385, 390, 400, 405, 420, 429, 455, 461, 480, 484, 490, 495, 500, 504, 506, 529, 560, 
576, 595, 605, 616, 625, 640, 650, 660, 676, 680, 686, 715, 720, 729, 50, 756, 770, 
784, 810, 816, 819, 836, 841, 845, 875, 880, 896, 900, 924, 935, 945, 961, 969, 980, 
1000,  1015, 1024, 1040, 1080, 1089, 1105, 1125, 1134, 1140, 1144, 1156, 1190, 1210, 
1225, 1240, 1260, 1280, 1296, 1309, 1326, 1330, 1344, 1369, 1375, 1386, 1400, 1440, 
1444, 1445, 1456, 1470, 1485, 1495, 1496, 1521, 1540, 1560, 1600, 1615,  1620}. We 

find that 41 = minnN n( 4
1A +1) as 4

1A
 

=  and hence (G(Z, A1))  41. As  

(G(Z, B1))  4, we derive: 
 

Theorem 4: Let D be a set of p numbers less than 10,000. Then 4  (G(Z, D))  41. 
 

Theorem 5: Let D be a set of twice p numbers less than10,000. Then (G(Z, D))=3. 
 

Proof We know that D = {210, 2730,7980}. By Fact 1, (G(Z, D)) = (G(Z, D1)) where 
D1={1,13, 38}.Note that 210 = gcd(210, 2730, 7980). Clearly gcd(D1)=1. Kemnitz and 

Kolberg [13], [14] have showed that if D = {d1, d2, ...} is finite and gcd(D)=1, then (G(Z, 

D))=2 if all di are odd; (G(Z, D))3 if no di  D is divisible by 3 and (G(Z, D)) = 3 if no 

di D is divisible by 3 with at least one di  D as even. In view of this, if |D|=r with 
gcd(D)=1 and if D comprises at least one even integer, then D includes both even and 
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odd integers. So G(Z, D) will include in it odd cycles and therefore (G(Z, D))  3. Also 

by a result of Walther [26] we have (G(Z, D))  |D|+1 = r+1. Applying this observation 

toour distance set D1 we derive that (G(Z, D)) = 3. 
 

Theorem 6: Suppose that D is a set of thrice p numbers less than10,000. Then 3  

(G(Z, D))  4.  
 

Proof We know that D = {840, 3360, 7560}. As in Theorem 6, we have (G(Z, D)) = 

(G(Z, D1)) where D ={1, 4, 9}. Once again making use of the observations in Theorem 

6, we deduce that 3  (G(Z, D1))  4. 
 
p triples were found in Babylon in the form of cuneiform tablets and are made use of in 
vedic rituals. They are also mentioned in early geometric books of India. A foremost 
mention of Pythagoras theorem can be seen in a text of Baudhayana about 800 B.Cin 
Sulbasutra [19]. For more one can also see ([5], [12], [10,16,17,19,20]). Infact, it would 
be interesting to note that p triples can be represented as Gopala-Hemachandra 
numbers. Consider the Gopala-Hemachandra G+1 quadruple (s, t, u, v). The G+1 
sequence was attributed to those Indian Mathematicians who belonged to the period 
prior to Fibonacci[28]. It is given as s, t, s+t, s+2t, 2s+3t, 3s+5t,... for any pair s, t. When 
s = t= 1, we derive the Fibonacci sequence. In the G+1 quadruple (s, t, u, v) if m1 = st, 

m2 = u(m3 m1)/t and m3 =tv+us, then (m1, m2, m3) is a p triple. If the quadruple (s, t, u, 
v) has no common divisors and s is odd, then 
(m1, m2, m3) is a primitive p triple. The values m2 and m3 are shown as m2 = 2tu, m3 = 
t2+u2. This shows that m1 can be got by multiplying s and v. For example, the G+1 

quadruple (1, 1, 2, 3) results in m3 = 12+22 =5, m1= 1  3 and m2=2 2=4. The G+1 

quadruple can be visualized as (b,
2

b)(a 
,

2

b)(a 
, a) where a, b are distinct odd integers 

and a > b. 
 

Theorem 7: Let D be a set of cardinality 3 comprising thrice p numbers. Then (G(Z, 

D))  3. 
 
ProofIt is known that 840 is a p number and 840x2 is a thrice p number for all x 
belonging to Z+. Now choose the distance set D to consist of all those square multiples 

of 840 which forms a p triple. For instance, once such D can be D = {840  32, 840 42, 

840  52}. Then by Fact 1 we can consider that D1 obtained from D by dividing each of 
its elements by 840. That is D1 ={a2, b2, c2} where (a, b, c) forms a p triple. Then as 

(G(Z, D))=(G(Z, D1)), we compute the chromatic number of (G(Z, D1)). Note that 
subgraph G(Z, D2) of the graph G(Z, D1) on the vertex set D2 = {02, b2, c2} is isomorphic 

to K3 as a2
02 = a2, c2

02 = c2 and c2
a2 = (m2+n2)2

(m2
n2)2 = 4m2n2 = (2mn)2 = b2 is a p 

triple of D1. This shows that (G(Z, D2)) =3 and as f is a monotone function (G(Z, D1))  

3. This implies that (G(Z, D))  3. 
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Theorem 8: Let D be a set of distinct quadruples of the form {a, b,
2

b)(a 
, 

2

b)(a 
,} 

where a < b, a and b are distinct odd integers and gcd(a,b)=1. Then 3  (G(Z, D))  5 
 

Proof Note that as a and b are both distinct odd integers, it is trivial that 
2

b)(a 
and 

2

b)(a 
, are even. Therefore by Lemma 9 of [19], [20] we infer that 3  (G(Z, D))  5. 

 

Theorem 9: Suppose that D = {a, b, 
2

b)(a 
, 

2

a)(b 
} with a < b are a set of distinct G+1 

quadruples with gcd(a,b)=1. If a =1 and b  1(mod 2) then (G(Z, D))  4. 
 
Proof Suppose that it is possible to color the vertices of Z with colors under the 

hypothesis of the theorem. Let g: V(G(Z,D)) {p, q, r, s} be one such coloring. As a =1 

and b 1(mod 2), the distance set D has its elements as D = {1,k,k+1,2k+1} where k  2. 
It is easy to see that k = 1 is excluded as the elements are distinct. As 0,k, k+1 are to be 
assigned with different colors, let us take g(0) = p, g(k) = q and  
g(k+1) = r. This means g(1) can be either q or s as 1 is adjacent with both 0 and k+1. If 
g(1) = q, then g(2k+1) = s as 2k+1 is adjacent with 0, k and k+1. If g(1) = s, then g(2k+1) 
can be assigned the color of 1. That is g(2k+1) =s. Now consider the vertex 2k+2. 
Clearly g(2k+2) = p or q as 2k+2 is adjacent with both k+1 and 2k+1. If g(2k+2) = p then 
g(k+2) = s as k+2 is adjacent with 1, k+1, 2k+2 with colors q, r and p. Note that the 
vertices 1,k+1, k+2, 2k+2 with respective colors q,r,s,p induces a K4 in G(Z, D). 

Therefore (G(Z, D))  4. 
 

Note 1: Suppose that x Z be any arbitraryvertex of G(Z,D). For G(Z, D) to contain a 
K5, x has to be adjacent with vertices 1, k+1, k+2, 2k+2, i.e. x should be one of 2, k+2, 

k+3, 2k+1, 2k+2, 2k+3, 3k+2, 3k+3 or 4k+3. Clearly x  k+1, k+2. Further it is not 
difficult to rule out the rest of the possibilities. However it is not known whether any 
other graph requiring five colors could be a subgraph of G(Z,D). Hence we raise the 
following conjecture. 
 

Conjecture 1: (G(Z,D)) = 4 where D comprises distinct G+1 quadruples with D = {1, k, 

k+1, 2k+1} for kZ+. 
 
We call two p numbers as twin p numbers if the difference of the larger and the smaller 
is six. The following are the twin p numbers less than 10,000.  (24, 30), (54, 60),(210, 
216), (330, 336), (480, 486), (540, 546), (720, 726), (750, 756),(1710,1716), (2160, 
2166), (8664, 8670) and (8970, 8976). 
 

Theorem 10: Suppose that D ={x, y} where x and y are twin pnumbers. Then (G(Z, D)) 
= 3.  
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Proof We know by a result of Kemnitz and Kolberg [13], [14] that if |D| =r with gcd(D)=1 

and if D comprises  atleast one even integer then (G(Z, D))3. Also by a result of 

Walther [26] we have (G(Z, D))  |D|+1 = r+1. As gcd(x, y) =1, if x and y are twin p 

numbers and D comprises at least one even number, we conclude that (G(Z, D)) = 3 
as it satisfies the conditions of the results of Kemnitz et.al [13], [14] and Walther. [26] 
 

Suppose that n Z+ and p is a prime. If p2| n whenever p | n then we call such an n, a 
powerful number. A p powerful number is one which is both powerful and p. Note that if 

n is p then the number s2n2t+1 is a powerful p number for all s, t Z+. The number 216 is 

the least powerful p number. Some sample powerful p numbers are listed as s2
 63; s2

 

2m
303; s2

 5m
 63; s2

 7m
 303. If D is a collection of powerful p numbers then D is 

infinite and after cancelling the common factor among them it may look like 1; 2m
 53;5

m; 

7m
 53,... Clearly gcd(D)=1 and it contains at least one even integer. So (G(Z, D))  3 

and (G(Z, D))  |D| +1. 
 

Problem: Determine (G(Z, D)) when D is a collection of powerful p number. 
 
 
3 Semiprimes 

 
A product of two prime numbers form a semiprime number. Semiprimes have 
applications in security, authentication and identification. For example, the RSA 
algorithm in public-key cryptography. When n is large, it is very difficult to find its factors 
p and q and all best known algorithms run in exponential time. This feature of 
asymmetry is responsible for being used as public keys in cryptography. The digital 
certificate employed to run programs on gridhad a 2048-bit modulus semiprime n. Note 
that n is public and found in both public and private key. So its security relies on the 
ability to find its prime factors.  Once its factors are known, it is easy to generate the 
corresponding private key and hence breach its security. Advanced techniques like 
elliptic curve factorization could not consume less time in the decomposition process for 
semiprimes of 50 to 100 digits length.  
 

Huge primes and semiprimes have the form 6s + 1 or 6s 1, where sis a positive 
integer. So the total number of primes lying between p1 and p2 is exactly the number of 

6n+1 or 6n1 primes lying in that range. Hence any semiprime n0 is one of: n0 = 

(6n+1)(6m+1), n0 = (6n1)(6m1) and n0 = (6n1)(6m+1). 
 

We now find the  of a graph whose distance set comprises semiprimes of the following 
four types: When the distance set Ai, i= 0,1,2,3 is a set of finite semiprimes congruent to 
i (mod 4) when i = 0,1,2,3. The chromatic number happens to be either 2 or 3. The trend 
of distribution of the semiprime pattern indicates that the chromatic number remains 
unaffected even when the three different distance sets Ai, i = 1, 2, 3get enlarged with 
either finite or infinite number of respective semiprimes. This observation leads to 
Conjecture 2. 
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Suppose that A0=4; A1 = {9, 21, 25, 33 ,49, 57, 65, 69, 77, 85, 
93,121,129,133,141,145,161,169,177,185,201, 205, 209, 213, 217, 221, 237, 249, 253, 
265, 289, 301, 305, 309}; A2 = {6,10,14, 22, 26, 34, 38,46, 58, 62, 74, 82, 86, 
94,106,118,122,134,142,146,158, 166,178,194, 202, 206, 214, 218, 226, 254, 262, 274, 
278, 298, 302, 314}; A3 = {15, 35, 39, 51, 55, 87, 91, 
95,111,115,119,123,143,155,159,183,187, 203, 215, 219, 235, 247, 259, 267, 287,291, 
295, 299, 303}; 
 
The elements of Ai are congruent to i (mod 4) for I = 0,1, 2, 3. As 2 is the only even 
prime it is easy to see that 4 is the only semi prime congruent to 0(mod 4) and A0will be 
always a singleton set. Let us now determine the chromatic number of G(Z, D=A1). We 

know that (G(Z, D=A1))  minn  N n( n
0D  + 1) [28] where n

0D  is the subset of D built by 

integers divisible by n. Using this we now calculate the upper bound forvalues of n with 
respect to distance set D = A1. 
 

For n=1, we get n( 1n
1 A )=1(34+1)=35 For n = 3,we get 3( 13

1 A )=3(15+1)=48 For n = 

5, we get 5( 15
1 A ) = 5(8+1) = 45 For n = 7, we get7( 17

1 A )=7(5+1)=42 For n = 9, we 

get 9( 19
1 A ) = 9(1+1) = 18,... One can deduce that (G(Z, A1))  18. But from the result 

of Kemnitzand Kolberg [13.14] discussed earlier in Theorem 7, we find that as gcd(A1) = 

1, (G(Z, A1)) = 2 as all elements of A1 are odd. The same is the case with A3 also. 

Therefore (G(Z, A3)) = 2. In view of this we state: 
 

Theorem 11: If D = A1 or A3 then(G(Z, A1) = (G(Z, A3)) = 2. 
 
Also from one of the results of Kemnitz and Kolberg [13,14] discussed inTheorem 7, we 
derive the following result as the elements of A2 are not congruent to 0 (mod 3) and has 
at leasteven integer. 
 

Theorem 12: If D = A2 then(G(Z, D= A2) = 3. 
 

Corollary 1: (G(Z, A0)) = 2.  
 

Conjecture 2: Find (G(Z, D)) where D= }{A*
i  and the elements of Ai are congruent to i 

(mod 4), i=1, 2, 3 is (a) a finite set of semiprimes and (b) an infinite set of semiprimes. 
 
Conclusion 
 
Motivated by the results of Eggleton we have computed both the lower and upper 

bounds for the  of certain distance graphs whose distance set elements are either 
primitive p numbers or twice p numbers or thrice p numbers or p quadruples. Then 
stimulated by the usefulness of semiprimes in cyber security we determined the 
chromatic number of certain distance graphs with distance set elements as semiprimes. 
Our results may find applications in resolving issues related to interference graphs as its 
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chromatic number determination plays a vital role and we hope torevert back on this 
aspect elsewhere. 
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